
Fish Manag Ecol. 2022;29:833–840.	 wileyonlinelibrary.com/journal/fme�  | 833© 2022 John Wiley & Sons Ltd.

1  |  INTRODUC TION

Non-native fishes are considered one of the greatest threats to na-
tive freshwater fish populations worldwide (Gozlan et al.,  2010). 
Negative effects of exotic fish on native fish populations include 
hybridization, predation, competition, habitat modification, and dis-
ease transmission (Fausch, 2007; McMahon et al., 2007; Rhymer & 
Simberloff, 1996; Vander Zanden et al., 1999; Zaret & Paine, 1973). 
While the introduction of non-native fish species outside their origi-
nal distributional range includes myriad taxonomic groups, perhaps no 
taxa exemplify this problem more than salmonids (Buoro et al., 2016). 
The brook trout (Salvelinus fontinalis Mitchell) is a paradoxical example 
of a species that has been extirpated from much of its native range in 
eastern North America (Hudy et al., 2008) due in part to displacement 
by non-native rainbow trout (Oncorhynchus mykiss Walbaum; Habera 
& Moore, 2005), yet in western North America (Dunham et al., 2002) 

and northern Europe (Korsu et al., 2010; Spens et al., 2007), brook 
trout are an invasive species that threatens the long-term viability of 
countless populations of various native salmonids.

To diminish negative effects of non-native freshwater fishes on 
native taxa, fisheries managers, and conservation biologists often 
implement mechanical (e.g., Knapp & Matthews,  1998; Meyer 
et al., 2006), chemical (e.g., Gresswell, 1991; Treanor et al., 2017), or 
biological (e.g., Koenig et al., 2015) eradication programs, which are 
often unsuccessful (reviewed in Meronek et al., 1996, and Rytwinski 
et al., 2019). The fact that conventional eradication programs often 
fail to remove the undesirable species highlights the need for 
novel conservation methods for eradicating non-native vertebrate 
populations.

One eradication method that has been considered is to shift the 
sex ratio of an unwanted population to all males, theoretically causing 
the population to collapse (Gutierrez & Teem, 2006; Hamilton, 1967). 
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Abstract
Biologists have theorized that stocking YY males (created via in-hatchery hormonal 
sex-reversal and selective breeding; hereafter MYY fish) could be used to eradicate 
unwanted non-native vertebrate populations, but little is known about the fitness of 
MYY individuals once released into the wild. We compared growth and body condi-
tion of stocked hatchery-reared MYY brook trout (Salvelinus fontinalis Mitchell) to wild 
conspecifics in two streams and two alpine lakes. Maximum age for wild fish was age 
6 at one stream and age 4 or 5 at the remaining waters, whereas for hatchery MYY fish, 
maximum age was age 5 at one stream and age 4 at the remaining waters. Total length 
ranged from 103 to 359 mm for wild brook trout and 115 to 353 mm for hatchery MYY 
brook trout. Growth rates and body condition of stocked MYY brook trout did not 
differ from wild fish in the same waters. Given that the success of MYY eradication 
programs is primarily contingent upon MYY individuals having fitness characteristics 
similar to wild conspecifics, our results provide further evidence that the stocking of 
hatchery-reared MYY fish may be a viable tool for eradicating unwanted non-native 
fish populations.
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834  |    UNSWORTH et al.

In fisheries, this could potentially be accomplished by hatchery 
rearing and subsequent stocking of individuals with two Y chromo-
somes (i.e., males with a genotype of YY rather than XY—hereafter 
MYY; e.g., Schill et al., 2016). Population models considering possible 
eradication of non-native brook trout populations have indicated 
that eradication is theoretically feasible if the fitness of hatchery 
MYY individuals approaches that of individuals in the wild popula-
tion (Day et al., 2020; Schill et al., 2017). Due to the novelty of using 
MYY vertebrates as an eradication method, almost nothing is known 
about the fitness of hatchery MYY fish once released into the wild. In 
the only such study ever conducted, hatchery MYY brook trout that 
were reared to about 225 mm total length and stocked in four North 
American mountain streams survived, spawned successfully with 
wild conspecifics, and produced all-male progeny, though reproduc-
tive success was lower for MYY fish than for their wild counterparts 
(Kennedy et al., 2018b). While those preliminary results were insight-
ful, additional evaluations of MYY fitness are clearly needed.

Fitness generally refers to reproductive success, but can be quan-
tified using metrics that are correlated with growth and body condi-
tion. For instance, fish body length and body condition were positively 
correlated with milt potency (Wedekind et al., 2007), mate choice (de 
Gaudemar et al., 2000), post-spawning survival (Cunjak et al., 1987), 
and fry production (Blanchfield et al., 2003; Hargrove et al., 2021). 
In addition, dominance hierarchies, which regulate the use of optimal 
feeding and resting habitats, and thus overall energy budget, were 
largely related to body length and condition in salmonids (Fausch & 
White,  1981; Nakano,  1995). Because growth rates and body con-
dition data are easily obtained and are correlated with fitness, we 
sought to determine whether growth and condition of hatchery MYY 
brook trout were similar to wild brook trout in high-elevation streams 
and alpine lakes, which encompass the habitats where they commonly 
displace native salmonids in western North America.

2  |  METHODS

Wild and hatchery MYY brook trout were sampled from two streams 
(i.e., Dry Creek and Tripod Creek) and two alpine lakes (i.e., Seafoam 

Lake #4 and Lloyds Lake) in central Idaho (Table 1). Waters included 
in the present study are a subset of several streams and alpine lakes 
currently being stocked with MYY brook trout to evaluate their abil-
ity to eradicate unwanted wild brook trout populations (Kennedy 
et al., 2017). Streams varied from 1.4 to 5.2 m in average width and 
1625 to 2279 m in elevation. Lakes varied from 2.7 to 2.9 ha in sur-
face area and 2092 to 2426 m in elevation.

MYY brook trout were developed and reared either at Mackay 
or Hayspur fish hatcheries following procedures described by 
Schill et al.  (2016). Fish were stocked annually as age 0 fingerlings 
(mean = 131 mm SD = 18.83; TL), and were adipose-clipped prior to 
release to differentiate them from wild fish. They were stocked at 
levels (Table 1) equal to approximately 50% of the wild brook trout 
population abundance at the time the study began, which was de-
termined from abundance estimates obtained for each population 
(Kennedy et al., 2017, 2018a). Stocking of MYY fish occurred for sev-
eral years prior to field sampling, to estimate fish growth for multiple 
age classes.

Fish were sampled in streams via backpack electrofishing in July 
of 2020 and 2021. Electrofisher settings were 60 Hz and 25% duty 
cycle, and voltage was adjusted until the electrofishing unit pro-
duced approximately 100 watts of average power output, to opti-
mize capture of salmonids in small streams (Meyer et al., 2021).

Seafoam Lake #4 was accessible by vehicle, so sampling was 
conducted using raft electrofishing and gill netting in September 
2020 and September 2021. Raft electrofisher settings were 60 Hz, 
25% duty cycle, and 300–400 volts, which produced 7–10 amps of 
peak current. Three pairs of gill nets were set in locations evenly 
dispersed around the lake. Nets were set each afternoon and pulled 
the following morning in the same order in which they were set. Gill 
net pairs consisted of one floating and one sinking experimental gill 
net (46 m long and 2 m deep; consisting of nylon mesh panels of 19-, 
25-, 32-, 38-, 51-, and 64-mm bar mesh). All net sets were set per-
pendicular to the shoreline with the smaller mesh toward the shore.

Lloyds Lake could not be accessed by vehicle so raft electrofish-
ing was not possible. Instead, sampling was in June 2021 with gill 
nets and hook-and-line angling. Three floating gill nets (36-m long 
1.8 m deep; consisting of nylon mesh panels of 10-, 13-, 19-, 25-, 

Parameter
Seafoam 
Lake #4 Lloyd Lake Dry Creek

Tripod 
Creek

Latitude 44.508 45.193 44.127 44.318

Longitude −115.126 −116.164 −113.568 −112.076

Initial MYY stocking year 2017 2015 2016 2016

Annual MYY stocking number 1176 1194 4326 6938

Wild fish suppression Yes No Yes No

Surface area (ha) 2.7 2.9 - -

Reach length (km) - - 6.5 9.1

Average wetted width (m) - - 5.2 1.4

Gradient (%) - - 1.5 1

Elevation (m) 2423 2092 2377 2146

TA B L E  1  Physical characteristics, 
treatment type, and initial stocking dates 
of four Idaho waters in which hatchery 
MYY (i.e., males with two Y chromosomes) 
and wild brook trout were sampled in July 
of 2020 and 2021 for growth and body 
condition comparisons
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    |  835UNSWORTH et al.

32-, and 38-mm bar mesh) were evenly distributed around the lake 
and oriented perpendicular to the shoreline, with the smaller mesh 
toward the shore. Nets were set in the afternoon and pulled the fol-
lowing morning in the same order in which they were set.

A minimum of two hatchery MYY brook trout and two wild 
brook trout were collected from every 10-mm length bin, when 
present in the sample. The number of fish sacrificed was limited 
to not interfere with the ongoing MYY hatchery brook trout study 
(Kennedy et al., 2017, 2018a). As part of that overarching MYY eval-
uation, wild brook trout were suppressed annually in Dry Creek 
and Seafoam Lake #4 (Table  1), with an annual population sup-
pression rate of about 50% (as determined from mark-recapture 
data). Wild brook trout were not removed from the remaining two 
waters.

Each fish sampled was measured in total length (mm) and weight 
(g). Fish were euthanized with a lethal dose of anesthetic and sag-
ittal otoliths were removed (Schneidervin & Hubert,  1986). Fish 
were either processed on shore or placed in individually labeled 
plastic bags, preserved using ice, and later processed in a laboratory. 
One otolith from each fish was randomly selected and embedded 
in epoxy. Using a low-speed saw (Buehler Inc.), a 0.55-mm section 
of each otolith was cut through the transverse plane of the otolith 
to expose a cross-section of the nucleus. Sectioned otoliths were 
polished and then photographed in immersion oil using reflected 

light at 40x magnification with a Leica (model DFC450 C) digital 
camera and a Leica (model DM 4000 B) compound light microscope. 
Photographs were reviewed by two independent readers who were 
unaware of fish length, and age was estimated by enumerating pre-
sumptive annuli. In cases where readers did not agree on the age of 
the fish, fish length was considered to determine a consensus age.

Length, weight, and age were used to compare growth rates and 
body condition (i.e., linear regression of log[length] on log[weight]) 
between hatchery MYY and wild brook trout. Growth rate and body 
condition were compared between groups (hereafter we refer to 
them as wild and hatchery “strains”) using linear regression and von 
Bertalanffy growth models (von Bertalanffy,  1938) in statistical 
software R (R Development Core Team, 2020). Growth was modeled 
using either linear regression or a von Bertalanffy growth model be-
cause preliminary analysis indicated that growth was asymptotic in 
one water (i.e., Dry Creek) but linear in other waters.

Asymptotic growth was estimated by fitting a von Bertalanffy 
growth function (von Bertalanffy, 1938), and linear growth was esti-
mated by fitting a linear regression model (Ogle et al., 2017). Within 
the asymptotic growth model, the effect of strain on growth was 
evaluated by estimating the theoretical maximum average length 
the population could achieve (L∞), the Brody growth coefficient (K), 
and the theoretical age when length equals zero (t0) for each strain. 
Ninety-five percent confidence intervals (CIs) were estimated for all 

F I G U R E  1  Back-calculated length at age for hatchery MYY and wild brook trout sampled in July of 2020 and 2021 at four Idaho waters. 
Each data point represents an individual fish at its age when captured
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836  |    UNSWORTH et al.

parameters, and parameter estimates were considered statistically 
different between wild and hatchery strains if the CIs did not overlap 
(Ogle et al., 2017).

Linear growth models were developed with length at capture as 
the response variable, and predictor variables for the estimated age 
of the fish at capture (age), a categorical variable that designated 
the fish as either MYY or wild (strain), and an age × strain interaction 
term. By constructing models in this manner, the slope was the esti-
mated growth rate for wild fish (which were the reference strain in 
the model), and the interaction term was the estimated difference 
in growth rate between hatchery MYY fish and wild fish. Ninety-
five percent CIs were constructed for each parameter estimate, and 
growth was considered significantly different between wild and 
hatchery MYY brook trout if the interaction term in the model pro-
duced 95% CIs that did not overlap zero (Johnson, 1999).

Body condition models were linearized with loge transformed 
weight as the response variable, loge transformed length as the 
predictor variable, and a length × strain interaction term (Quinn & 
Deriso,  1999). As with linear growth models, the interaction term 
was the estimated difference in condition between hatchery MYY 
fish and wild fish, and the condition was considered significantly dif-
ferent if the interaction term in the model produced 95% CIs that did 
not overlap zero (Johnson, 1999).

3  |  RESULTS

For 381 brook trout sampled across four waters, maximum age was 
age 6 at Dry Creek and age 4 or 5 at other waters for wild brook 
trout, and age 5 at Dry Creek and age 4 at other waters for hatchery 
MYY brook trout. Total length ranged from 103 to 359 mm for wild 
brook trout and 115 to 353 mm for hatchery MYY brook trout.

Growth did not differ between wild and hatchery-reared MYY 
brook trout in any stream or lake we sampled. In Dry Creek, where 
growth was asymptotic, K was 0.37/year (95% CI = 0.17–0.59/year), 
and L∞ was 357 mm (311–500 mm) for hatchery MYY brook trout, 
and 0.51/year (0.28–0.81/year) and 306 mm (273–378 mm) for wild 
brook trout. In other waters, where growth was linear, hatchery 
MYY brook trout grew an estimated 24–43 mm per year, whereas 
wild brook trout grew an estimated 36–42 mm per year, although 
differences in growth rate were not significant (Figure 1; Table 2). 
In two waters where growth was linear (i.e., Seafoam Lake #4 and 
Tripod Creek), age 0 MYY fish were significantly larger than their wild 
counterparts, but this did not translate into different growth rates 
(Table  2). Body condition also did not differ significantly between 
wild and hatchery MYY brook trout (Figure 2; Table 3).

4  |  DISCUSSION

We found that hatchery MYY brook trout stocked into mountain 
streams and alpine lakes as age 0 fingerlings grew at a similar rate 
and maintained a similar body condition as wild brook trout, unlike 

other studies that generally demonstrated poorer performance 
of hatchery salmonids than wild counterparts (reviewed in Araki 
et al., 2008). For example, hatchery salmonids generally suffer higher 
mortality (Jonsson et al., 2003; Miller, 1954), slower growth (Bohlin 
et al., 2002; Finstad & Heggberget, 1993), and lower reproductive 
fitness (reviewed in Christie et al., 2014) than wild salmonids in the 
same environment. Reproductive fitness was also slightly lower for 
catchable-sized (not fingerling) hatchery MYY brook trout than wild 
conspecifics in several mountain streams (Kennedy et al.,  2018b). 
Taken together, results of Kennedy et al. (2018b) and our study sug-
gest that hatchery MYY fish stocked into lentic and lotic waters may 
survive and grow similarly to wild fish, but once they reach maturity, 
they may have lower reproductive fitness. However, these are the 
first studies to evaluate MYY vertebrates in the wild, so more re-
search is needed on all aspects of their post-release performance.

In one alpine lake and one stream, size at age 0 was signifi-
cantly larger for hatchery MYY brook trout than for wild fish, likely 
because age 0 MYY fingerlings were stocked in summer at a larger 
size (~130 mm) than wild counterparts (~55 mm in their first sum-
mer; Kennedy et al.,  2017 and Kennedy et al.,  2018b). The lack 
of a difference in growth rate between the two strains we mea-
sured later indicates that the size advantage of age 0 hatchery MYY 

TA B L E  2  Parameter estimates from von Bertalanffy (VBGF) and 
linear regression growth models for hatchery MYY and wild brook 
trout sampled in July of 2020 and 2021 at four Idaho waters

Parameter Estimate LCI UCI

Dry Creek (VBGF)

L∞ (Wild) 306 273 378

L∞ (MYY) 357 311 500

K (Wild) 0.51 0.28 0.81

K (MYY) 0.37 0.17 0.59

t0 (Wild) −0.31 −0.92 0.06

t0 (MYY) −0.63 −1.40 −0.19

Lloyd Lake (Linear)

Intercept 118.74 90.06 147.42

Age 38.63 27.01 50.25

Strain (MYY) 20.93 −15.23 57.09

Age × Strain −6.75 −22.29 8.78

Seafoam Lake #4 (Linear)

Intercept 124.28 115.29 133.27

Age 41.71 38.46 44.96

Strain (MYY) 10.98 2.31 34.53

Age × Strain 1.15 −5.31 7.60

Tripod Creek (Linear)

Intercept 95.77 83.98 107.56

Age 35.66 29.95 41.37

Strain (MYY) 30.21 9.59 50.83

Age × Strain −11.55 −24.39 1.29

Note: Lower (LCI) and upper (UCI) bounds for 95% confidence intervals 
are also included.
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    |  837UNSWORTH et al.

fish at the time of stocking did not affect their growth rate or that 
of wild fish. Although wild fish are generally superior in overall 
fitness to hatchery fish, a size advantage at stocking may allow 
hatchery fish to overcome their inferior fitness (reviewed in Tatara 
& Berejikian,  2012). Additional research is needed to compare 
growth and condition of wild and stocked MYY fish to elucidate if 
a particular size or age at stocking results in optimal post-release 
performance of MYY fish.

An inherent limitation of our study was that wild brook trout 
populations in two study waters, Dry Creek and Seafoam Lake #4, 
were subjected to manual population suppression for several years, 
which could have affected growth and condition of fish in our study. 
However, growth and condition did not differ between suppression 
and non-suppression waters for either wild or hatchery MYY fish in 
our study. By contrast, suppressing wild brook trout populations in 
two Rocky Mountain streams improved post-stocking survival of 
hatchery MYY brook trout compared to their survival in two streams 
without suppression of wild fish (Kennedy et al.,  2018b). Brook 
trout are capable of compensatory responses to population reduc-
tions, such as improved growth, reduced natural mortality, and in-
creased recruitment (Hall, 1991; McFadden, 1961; Messner, 2017; 
Meyer et al., 2006). In our study, manually suppressing wild brook 
trout may have caused a compensatory response in both wild and 
hatchery fish via some mechanism that we did not monitor, such as 

reduced natural mortality that masked suppression-related changes 
in growth or condition.

Our study was also limited by a need to sacrifice few fish for sam-
pling and a need to include males and females in the sample of wild 
fish. First, we were constrained by an ongoing long-term MYY study 
that limited the number of fish we could sacrifice, which limited the 
sample size of brook trout from each water and the number of study 
waters. Second, the sample of wild brook trout included both males 
and females, whereas the sample of hatchery MYY brook trout in-
cluded only males. In wild brook trout populations, male brook trout 
often grow faster than females (e.g., Hoover, 1939; McFadden, 1961; 
Toetz et al., 1991), so we would have needed to determine sex of all 
fish sampled to compare growth of hatchery males to wild males. 
However, male brook trout do not always grow faster than females 
(e.g., Curry et al., 2003), and even when they do, the growth differ-
ence between sexes for brook trout is usually only a few millimeters 
at each age, so we consider this limitation minor.

Despite these limitations, our results indicate that hatchery 
MYY brook trout survived for several years, grew at an equivalent 
rate, and maintained an equivalent body condition as wild fish in 
alpine lakes and mountain streams. Although our results are en-
couraging, factors other than growth and condition could deter-
mine the success of using MYY technology as a biological control 
for invasive fishes. Indeed, hatchery MYY fish liberated in the 

F I G U R E  2  Length–weight relationships for hatchery MYY and wild brook trout sampled in July of 2020 and 2021 at four Idaho waters. 
Each data point represents an individual fish
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838  |    UNSWORTH et al.

wild must also reproduce at adequate rates (not equivalent rates) 
to steadily skew the sex ratio of the entire invasive population. 
Although they appear capable of doing so (Kennedy et al., 2018b), 
a lack of information comparing MYY vertebrates to wild counter-
parts highlights the need for additional research before concluding 
that hatchery-reared MYY fish can eradicate unwanted non-native 
fish populations.
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